Shorted operators and rank decomposition matrices

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral Shorted Matrices

Given a n × n positive semidefinite matrix A and a subspace S of C, Σ(S, A) denotes the shorted matrix of A to S. We consider the notion of spectral shorted matrix ρ(S, A) = lim m→∞ Σ(S, A). We completely characterize this matrix in terms of S and the spectrum and the eigenspaces of A. We show the relation of this notion with the spectral order of matrices and the Kolmogorov’s complexity of A t...

متن کامل

Generalized Orthogonal Projections and Shorted Operators

Let H be a Hilbert space, L(H) the algebra of all bounded linear operators on H and 〈 , 〉A : H×H → C the bounded sesquilinear form induced by a selfadjoint A ∈ L(H), 〈ξ, η〉A = 〈Aξ, η〉, ξ, η ∈ H. Given T ∈ L(H), T is A-selfadjoint if AT = T ∗A. If S ⊆ H is a closed subspace, we study the set of A-selfadjoint projections onto S, P(A,S) = {Q ∈ L(H) : Q = Q , R(Q) = S , AQ = Q∗A} for different choi...

متن کامل

Bilateral Shorted Operators and Parallel Sums

In this paper we study shorted operators relative to two different subspaces, for bounded operators on infinite dimensional Hilbert spaces. We define two notions of “complementability” in the sense of Ando for operators, and study the properties of the shorted operators when they can be defined. We use these facts in order to define and study the notions of parallel sum and subtraction, in this...

متن کامل

Rank-one Decomposition of Operators and Construction of Frames

Abstract. The construction of frames for a Hilbert space H can be equated to the decomposition of the frame operator as a sum of positive operators having rank one. This realization provides a different approach to questions regarding frames with particular properties and motivates our results. We find a necessary and sufficient condition under which any positive finite-rank operator B can be e...

متن کامل

A Hierarchical Singular Value Decomposition Algorithm for Low Rank Matrices

Singular value decomposition (SVD) is a widely used technique for dimensionality reduction and computation of basis vectors. In many applications, especially in fluid mechanics, the matrices are dense, but low-rank matrices. In these cases, a truncated SVD corresponding to the most significant singular values is sufficient. In this paper, we propose a tree based merge-and-truncate algorithm to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 1986

ISSN: 0024-3795

DOI: 10.1016/0024-3795(86)90257-0